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LSM3, NDUFB3, and PTGS2 may be potential biomarkers 
for BRCA1-mutation positive breast cancer
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Abstract
Purpose: We aimed to find critical biomakers associated with BRCA1-mutation positive breast cancer. Methods: 
The data set E-MTAB-982 was downloaded from ArrayExpress database and the data were preprocessed using 
R package Oligo. Differential expression analysis between BRCA1-mutation positive breast cancer patients and 
BRCA1-mutation positive healthy subjects were performed using limma package. Then, gene set enrichment anal-
ysis was conducted. We constructed the network for BRCA1, its related differentially expressed genes (DEGs), 
and the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. After that, survival analysis was 
performed based on the clinical data of breast cancer in TCGA database. Finally, box diagram for key genes was 
drawn. Results: The network showed that LSM3, NDUFB3, GNPDA2, and PTGS2 were BRCA1 related DEGs. 
Furthermore, LSM3 was mainly enriched in RNA degradation pathway and spliceosome pathway. PTGS2 was en-
riched in arachidonic acid metabolism and VEGF signaling pathway. Survival analysis indicated that high expres-
sion of LSM3 indicated a poor prognosis of BRCA1-mutant breast cancer. Besides, box diagram showed that LSM3 
was down-regulated in BRCA1-mutation positive breast cancer patients  compared with that in BRCA1-mutation 
positive healthy subjects. Conclusions: LSM3, NDUFB3, and PTGS2 may be biomarkers in BRCA1-mutant breast 
cancer, and high expression of LSM3 may indicate a poor prognosis of BRCA1-mutant breast cancer. 
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Introduction 

Breast cancer is a common disease with high 
mortality and morbidity (1). It is expected that 
breast cancer accounts for 30% of all newly di-
agnosed female cancers (2). The signs of it in-
clude a change in the breast shape, a lump in 
the breast, a red scaly patch of skin and so on 
(3). Risk factors for this cancer include obesity, 
drinking alcohol, older age, family history and 
being female (4). The survival rates of breast 
cancer are poorer in developing countries (4). In 
spite of advances in therapeutic methods such as 
chemotherapy and surgical therapy, mortality re-
lated with breast cancer still increases in China 
(5), which is due to the difficulties in the finding 
of diagnostic and treatment methods for breast 
cancer. Furthermore, with the increasing mor-
bidity and the trend of young age in recent years, 
breast cancer threatens the women’s health (6). It 
is necessary to find more effective diagnostic and 
treatment targets for breast cancer. 
It is reported that BRCA1 and BRCA2 were two 
major predisposing genes for breast cancer (7). 
The risk of breast cancer was increased in BRCA1 
and BRCA2 mutation carriers (8). The lifetime 
risk of breast cancer in BRCA1-mutation carri-
ers is 85% (9). Thus, BRCA1 plays critical role 
in breast cancer development, and exploring the 
molecular mechanisms of BRCA1-mutant breast 
cancer may provide clues for the early diagnosis 
and treatment of the disease. Recent studies have 
reported some important genes associated with 
breast cancer. For instance, Liu et al. (10) identi-
fied that FOS, IL6 and FN1 might be regarded as 
treatment targets for breast cancer. ARID4A and 
CDC20 may be used to predict the prognosis of 
breast cancer after chemotherapy (11). Wu et al. 
(12) indicated that ADAMTS1 might be involved 
in the development of breast cancer via regulat-
ing angiogenesis, and CCNG1 might play a key 
role in breast cancer progression through inhi-
bition of cell proliferation. Although the former 

studies reported some key genes in breast cancer, 
there were few studies on the key potential target 
genes in breast cancer with BRCA1-mutantion. 
Therefore, it is needed to study critical target 
genes in BRCA1-mutation positive breast cancer. 
In our present study, the dataset E-MTAB-982 
was downloaded and the data were prepro-
cessed. Differential expression analysis between 
BRCA1-mutation positive breast cancer patients 
and BRCA1-mutation positive healthy subjects 
was performed to identify the differentially ex-
pressed genes (DEGs). Then, gene set enrichment 
analysis (GSEA) was conducted. We constructed 
the network for BRCA1, its related DEGs, and 
the enriched Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways. After that, survival 
analysis was performed based on the RNA-Seq 
and clinical data in The Cancer Genome Atlas 
(TCGA) database. Finally, box diagram for key 
genes was drawn. We aimed to find critical tar-
get genes associated with BRCA1-mutant breast 
cancer. 

Methods

Data source and data preprocessing
The dataset E-MTAB-982 was downloaded 
from ArrayExpress (13) database (https://www.
ebi.ac.uk/arrayexpress/). The dataset included 
10 lymphocyte samples obtained from breast 
cancer patients with BRCA1-mutation (cancer 
group) and 11 lymphocyte samples from normal 
subjects with BRCA1-mutation (control group) 
(The samples with ovarian carcinoma, or mixed 
samples with breast carcinoma and ovarian car-
cinoma were excluded). The platform was Affy-
metrix GeneChip Human Gene 1.0 ST Array 
[HuGene-1_0-st-v1]. 
Background correction and data normalization 
(including conversion of original data format, 
supplement of missing value, background cor-
rection, and data standardization) were conduct-
ed for the original CEL data using R package 

https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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Oligo (14) (version 1.46.0, http://bioconductor.
org/help/search/index.html?q=oligo/). Annota-
tion for probes was performed using platform 
annotation files, and probes not matching to 
gene symbol were removed. For different probes 
matching to the same gene, the mean values of 
different probes were regarded as the final ex-
pression value of this gene. 

Differential expression analysis
Differential expression analysis between cancer 
group and control group were performed using 
limma package (15) (version 3.38.3, http://www.
bioconductor.org/packages/2.9/bioc/html/limma.
html). Genes with p value < 0.05 and |log fold 
change (FC)| ≥ 0.585 were considered as DEGs. 

GSEA and network construction
Pearson correlation coefficients between BRCA1 
and each gene were calculated using GSEA soft-
ware (V3.0) (16). In detail, the parameters were 
set as follows: gene sets database selected c2.cp.
kegg.v6.2.symbols.gmt; the expression value of 
BRCA1 was set as the phenopyte labels; Pear-
son was selected for metric for ranking genes 
to calculate Pearson correlation coefficients be-
tween BRCA1 and each gene. The correlation 
coefficients were sorted in descending order 
(gene list sorting mode: real; gene list ordering 
mode: descending), and the KEGG pathway en-
richment analysis was performed (17). Genes 
with |r| ≥ 0.3 and p value < 0.05 were considered 
significantly correlated with BRCA1. Pathways 
with |Normalized Enrichment Score (NES)| > 1, 
NOM p value < 0.05, and false discovery rate 
(FDR)-corrected q value < 0.25 were regarded as 
significantly enriched pathways. Intersections of 
genes significantly correlated with BRCA1 and 
DEGs were set as BRCA1 related DEGs. The 
pathways significantly enriched by these genes 
were screened. 
Based on the BRCA1, obtained BRCA1 related 
DEGs, and their enriched KEGG pathways, the 

interaction network was constructed using Cyto-
scape (version 3.3.0) (18). 

Survival analysis based on data from TCGA 
database
To investigate the effects of BRCA1 related 
DEGs on the prognosis of breast cancer, we 
downloaded the RNA-Seq and clinical data of 
breast cancer from TCGA database (https://tc-
ga-data.nci.nih.gov/). The samples that had clin-
ical data were selected, and 1067 samples were 
finally included. Additionally, the sample infor-
mation was filtered and the samples with sur-
vival time < 1 month were removed. The DEGs 
corresponding samples were retained. Survival 
curves were generated using the Kaplan-Meier 
method, and log-rank test was used to assess the 
differences between the high- and low-expres-
sion groups (based on median grouping) using 
survival package (version 2.42.6) (19) in R. Sur-
vival curve was drawn and genes with p < 0.05 
were selected. 

Box diagram for key genes
Box diagram for key genes was drawn according 
to their expression values in cancer and control 
groups, showing the difference of these genes in 
different groups. The p values for comparison of 
expression in genes were analyzed using limma 
package (15) (version 3.38.3).

Results

Differential expression analysis
Samples expression matrix was obtained 
through data preprocessing. After differential 
expression analysis, 164 (88 up-regulated and 
76 down-regulated) DEGs for cancer vs. control 
groups were obtained. The heatmap and volcano 
plot for DEGs between two groups are present-
ed in Figure 1. There was no significant differ-
ence in the expression of BRCA1 between two 
groups (logFC = -0.213, p value = 0.03). For the 

http://bioconductor.org/help/search/index.html?q=oligo/
http://bioconductor.org/help/search/index.html?q=oligo/
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
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Fig. 1. The heatmap (A) and volcano plot (B) for differentially expressed genes (DEGs) between tumor and 
normal samples.
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subsequent analysis, BRCA1 was also included 
in the DEGs list. 

GSEA results
The results showed that 47 positive pathways 
and 28 negative pathways were enriched by 
BRCA1 related DEGs. In this analysis, BRCA1 
was significantly enriched in ubiquitin mediat-
ed proteolysis pathway (p-value < 0.01; q-value 

= 0.01) (Figure 2). Table 1 shows the pathways 
enriched by leading subset genes that were posi-
tively and negatively correlated with BRCA1. 

Network construction
The network for BRCA1, BRCA1 related DEGs, 
and KEGG pathways enriched by BRCA1 is 
presented in Figure 3. BRCA1 related DEGs in-
cluded LSM3 homolog, U6 small nuclear RNA 

Fig. 2. The enrichment plot of ubiquitin mediated  proteolysis pathway. The first part of the diagram is 
enrichment score line chart, which shows the ES value in each position when the analysis is calculated along the 
ranking list. The score at the highest peak (the furthest vertical distance from 0.0) is the ES value of the gene set. 
The second part of the diagram is that lines are used to mark the location of members of the gene set in the gene 
sequencing list, and the black lines represent the functional annotated gene set of current analysis for genes in 
the sequencing gene table. Leading edge subset is the corresponding genes from (0,0) to green curve peak ES. 

The third part of the diagram is rank value of all genes after ranking. The genes corresponding to the red part of 
the heat map are positively related to BRCA1, and the blue part is negatively related to BRCA1. The grey area 

represents the Pearson correlation coefficient corresponding to each gene. 
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Table 1 The pathways enriched by leading subset genes positively and negatively correlated with 
BRCA1.

NAME GENE
RANK 

METRIC 
SCORE

CORE 
ENRICH-

MENT
NES NOM 

p-val
FDR 
q-val

KEGG_ALZHEIMERS_DISEASE NDUFB3 0.42 Yes 1.39 0.03 0.14 
KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_
SUGAR_METABOLISM GNPDA2 0.39 Yes 2.21 <0.01 <0.01 

KEGG_ARACHIDONIC_ACID_METABOLISM PTGS2 -0.34 Yes -2.05 <0.01 <0.01 
KEGG_HUNTINGTONS_DISEASE NDUFB3 0.42 Yes 1.71 <0.01 0.02 
KEGG_OXIDATIVE_PHOSPHORYLATION NDUFB3 0.42 Yes 1.84 <0.01 0.01 
KEGG_PARKINSONS_DISEASE NDUFB3 0.42 Yes 1.45 0.02 0.10 
KEGG_RNA_DEGRADATION LSM3 0.36 Yes 2.53 <0.01 <0.01 
KEGG_SPLICEOSOME LSM3 0.36 Yes 2.90 <0.01 <0.01 
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS BRCA1 1.00 Yes 1.85 <0.01 0.01 
KEGG_VEGF_SIGNALING_PATHWAY PTGS2 -0.34 Yes -1.77 <0.01 0.02 

NES: ES value after normalization; NOM p-val: p-value; FDR q-val: q-value; CORE ENRICHMENT: Yes represents that the 
gene is located in the leading subset of the entire set of genes; RANK METRIC SCORE: correlation coefficient between BRCA1 
and other genes. 

Fig. 3. The network for BRCA1, its related differentially expressed genes (DEGs), and the enriched KEGG 
pathways. Blue oval: KEGG pathway; pink diamond: BRCA1 gene; red triangle: up-regulated DEGs; 

green triangle: down-regulated DEGs.
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and mRNA degradation associated (LSM3), 
NADH: ubiquinone oxidoreductase subunit B3 
(NDUFB3), glucosamine-6-phosphate deami-
nase 2 (GNPDA2), and prostaglandin-endoper-
oxide synthase 2 (PTGS2). LSM3 was signifi-
cantly enriched in RNA degradation pathway 
(p-value < 0.01; q-value < 0.01) and spliceo-
some pathway (p-value < 0.01; q-value < 0.01). 
NDUFB3 was enriched in Alzheimers disease 
(p-value = 0.03; q-value = 0.14), Huntingtons 
disease (p-value < 0.01; q-value = 0.02), oxida-
tive phosphorylation (p-value < 0.01; q-value = 
0.01), and Parkinsons disease (p-value = 0.02; 
q-value = 0.10). PTGS2 was enriched in arachi-

donic acid metabolism (p-value < 0.01; q-value 
< 0.01), and VEGF signaling pathway (p-value 
< 0.01; q-value = 0.02). GNPDA2 was enriched 
in amino sugar and nucleotide sugar metabolism 
(p-value < 0.01; q-value < 0.01).

Survival analysis based on data from TCGA
Based on the data from TCGA, survival anal-
ysis was performed for BRCA1-related genes 
enriched in GSEA. LSM3 was associated with 
survival of breast cancer (p = 0.01). A higher ex-
pression of LSM3 indicated a worse prognosis. 
Survival curve for LSM3 is shown in Figure 4.

Fig. 4. Survival curve for LSM3 based on TCGA database.
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that LSM3 was down-regulated in cancer group 
compared with that in control group.
It is reported that LSM3 proteins is physically 
related with some splicing factors (20). Splicing 
factor ratio is regarded as an index of tumor ag-
gressiveness and epithelial-mesenchymal tran-
sition in breast cancer (21). A recent study has 
reported that single nucleotide polymorphism of 
LSM3 is significantly associated with colorectal 
cancer (22). GSEA result showed that NDUFB3 
was enriched in oxidative phosphorylation path-
way. Metabolic reprograming is an emerging 
hallmark of tumor biology. There is a group of 
cancers, including breast cancer, in which oxi-
dative phosphorylation is down-regulated (23). 
Sotgia et al. (24) have suggested that high level 
of NDUFB3 predicts reduced overall survival 
in lung cancer patients. PTGS2 is undetectable 
in most normal tissues, and can be induced in 
response to stressors, such as inflammatory cy-
tokines, hypoxia, and tumor promoters (25). It 
has been indicated that PTGS2 genetic variation 
is implicated in breast cancer susceptibility (26). 
Overexpression of PTGS2 in patients with breast 
cancer is associated with a worse prognosis 
(27). In HER2-negative breast cancer patients, 

Box diagram for key genes
According to the expression values of BRCA1 
and LSM3 in cancer group and control group, the 
box diagrams of the two genes were drawn. The 
diagram showed that both BRCA1 and LSM3 
were down-regulated in cancer group compared 
with that in control group (Figure 5). 

Discussion

In this study, the dataset including 10 lympho-
cyte samples from breast cancer patients with 
BRCA1-mutation and 11 lymphocyte sam-
ples from normal persons with BRCA1-muta-
tion were used for the analysis, and we aimed 
to identify critical target genes associated with 
BRCA1-mutation breast cancer. The constructed 
network showed that LSM3, NDUFB3, GNP-
DA2, and PTGS2 were BRCA1 related DEGs. 
Furthermore, LSM3 was mainly enriched in 
RNA degradation pathway and spliceosome 
pathway. PTGS2 was enriched in arachidonic 
acid metabolism and VEGF signaling pathway. 
Survival analysis based on the data in TCGA 
database indicated that LSM3 was associated 
with survival. Besides, box diagram showed 

Fig. 5. Box diagram for BRCA1 and LSM3.
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the expression of PTGS2 predicts response to 
neoadjuvant celecoxib (28). Dossus et al. (26) 
indicated that PTGS2 polymorphisms were as-
sociated with the risk of breast cancer. To our 
knowledge, there is no studies about the associ-
ation between GNPDA2 and breast cancers or 
other cancers. Taken together, we proposed that  
LSM3, NDUFB3 and PTGS2 may play signifi-
cant roles in disease progression in breast cancer 
patients with BRCA1-mutation. The associa-
tions between GNPDA2 and breast cancers need 
further studies. 
In addition, LSM3 was mainly enriched in RNA 
degradation pathway and spliceosome pathway. 
PTGS2 was enriched in arachidonic acid me-
tabolism and VEGF signaling pathway. Studies 
have reported that RNA degradation is related 
with cell apoptosis (29, 30), an important bio-
logical process for cancer cell progression. Koe-
doot et al. (31) have suggested that spliceosome 
factors are drivers of breast cancer development. 
Deregulated spliceosome core machinery is im-
portant for mTOR blockade and autophagy in 
cancer cells (32). Arachidonic acid metabolism 
plays role in Stat5 activation in breast cancer 
cells (33). VEGF signaling pathway is crucial 
for inhibition of neoangiogenesis in breast can-
cer (34). Chun et al. (35) suggested that VEGF 
signaling pathway might be potential thera-
peutic target in obesity-related breast cancer. 
Therefore, we speculated that LSM3 may play 
roles in BRCA1-mutant breast cancer via RNA 
degradation pathway and spliceosome pathway, 
and PTGS2 may be involved in BRCA1-mutant 
breast cancer via arachidonic acid metabolism 
pathway and VEGF signaling pathway.
Furthermore, in our present study, survival 
analysis, through downloading RNA-Seq and 
clinical data from TCGA database, indicated 
that LSM3 was associated with the survival of 
breast cancer patients, and a higher expression 
of LSM3 indicated a worse prognosis. The box 
diagram showed that LSM3 was down-regulated 

in tumor samples compared with that in normal 
samples. This seems conflicting. But the role of 
gene in organism is complex. The differential ex-
pression of LSM3 in cancer and normal tissues 
is associated with the onset of cancer, and the 
survival prognosis of cancer is associated with 
the progression of cancer. We speculated that 
LSM3 is low in expression to combat certain 
aberrations in tumor cells, so patients with good 
prognosis may also have low expression of this 
genes, which needs to be further investigated. 
Therefore, the results were not conflicting. Com-
bined with the above stated, we inferred that 
LSM3 may be an important prognostic factor for 
BRCA1-mutant breast cancer. 
However, there was no validation experiments 
in this study. Additionally, in the dataset of 
E-MTAB-982, there are ovarian cancer associat-
ed data, nevertheless we did not compare breast 
cancer with and ovarian cancer. Investigating the 
correlations between the two cancers may bring 
some useful information in the future.
In conclusion, LSM3, NDUFB3 and PTGS2 may 
be potential biomarkers in BRCA1-mutant breast 
cancers. Furthermore, high expression of LSM3 
may indicate a poor prognosis of BRCA1-mu-
tant breast cancer according to the data in TCGA 
database. However, because of lacking of verifi-
cation, further verification experiments are need-
ed to confirm our present results. 
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