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Abstract

Background: Sepsis is the leading cause of morbidity and mortality in intensive care units. This study explored 
the possible role of vascular endothelial growth factor-C (VEGF-C) and podoplanin (PDPN) in sepsis. Methods: 
22 Wistar rats were divided into three groups: two experimental (Group A and B, n=8/8) and a control (Group C, 
n=6). Sepsis was induced with intraperitoneal injection of ESBL (extended-spectrum beta-lactamases)-producing 
E-coli live bacteria for group A and with lipopolysaccharide for group B. Sterile saline solution was injected for 
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Introduction

Sepsis, a major cause of death amongst critical-
ly ill patients, is the leading cause of morbidi-
ty and mortality in intensive care units (ICUs) 
(1,2). Despite advances in antimicrobial therapy, 
sepsis remains a major public health problem 
due to its onset, evolution and outcome. Over 
900,000 people are affected every year in the 
United States, with an incidence of 535 cases per 
100,000 person-years. Although there are stan-
dardized therapeutic protocols, 270,000 deaths 
are reported annually in the United States, with a 
mortality rate between 20% and 36% (3-5). 
Despite the fact that a variety of biomarkers are 
used in daily practice o establish the diagnosis 
and severity of sepsis, none have high enough 
specificity and sensitivity to distinguish an in-
flammatory syndrome of sepsis. No specific bio-
markers are used in daily practice to diagnose 
sepsis with negative blood cultures (6-11). This 
opens up new research opportunities for early di-
agnosis of septic patients. 
Vascular endothelial growth factor (VEGF) fam-
ily of proteins includes five different polypep-
tides: placenta growth factor (PlGF), VEGF-A, 
VEGF-B, VEGF-C, VEGF-D (12-15). Their 
function depends upon binding to type V re-
ceptor tyrosine kinases. If VEGF-A and –B 
and their receptors (VEGF-R1 and –R2) are in-
volved in angiogenesis, VEGF-C and its recep-
tor- VEGF-R3, modulate lymphangiogenesis 

(15-20). It was also postulated that VEGF-A/
VEGF-R1 and VEGF-B/–R2 are secreted by al-
veolar cells under hypoxic and septic conditions 
and induce injuries of the endothelial-alveolar 
barrier but few data are known about the role of 
VEGF-C and its receptor VEGF-R3 in modulat-
ing septic process (16).
 Podoplanin (PDPN) is a transmembrane protein 
involved in embryogenesis and organ develop-
ment, but also cell motility, carcinogenesis and 
metastasis. It is expressed on a variety of epithe-
lial surfaces in multiple tissues, including brain, 
heart, lungs, kidney, osteoblasts, and lymphoid 
organs (17-19). The name of this protein is de-
rived from its expression in kidney podocytes 
(20). It has been suggested that PDPN might 
have a role in sepsis but the pathological mecha-
nism is far to be understood.
As PDPN was postulated to stimulate lymphan-
giogenesis and, as consequence, the inflamma-
tory process and tissue edema, the aim of this 
study was to explore the possible role of the 
inflammatory storm, during sepsis, in inducing 
lymphatic flow disorders (21, 22). For this rea-
son, tissue expression of PDPN was examined in 
association with the serum level of VEGF-C, in 
live-bacteria- vs. lipopolysaccharide (LPS)-in-
duced sepsis. In order to assess the involvement 
of different bacterial components in the evolu-
tion of septic syndrome, either LPS or live bac-
teria were used to trigger the immune response 

group C. Blood samples were collected after 24 hours to determine the serum level of VEGF-C, and PDPN expres-
sion was examined in liver, kidney, and lung tissues. Bacteremia was assessed for group A. Results: Higher serum 
levels of VEGF-C were found in Group A vs C (p=0.05) and group B vs. C (p=0.004), respectively.VEGF-C was 
also increased in animals with negative- vs. positive blood cultures from group A (p=0.04) and from group B vs. 
those with positive blood cultures from group A (p=0.03). High intensity of PDPN tissue expression was observed 
in the pulmonary alveolocytes from Group A and epithelium of the proximal renal tubules in groups B and C, com-
pared to group A. Conclusions: Circulating VEGF-C can be succesfuly used as a biomarker of sepsis with negative 
blood cultures and high risk of renal failure, whereas PDPN seems to exert a protective role against lung injuries 
in live bacteria-induced sepsis.
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in rats, by LPS alone, or by LPS as part of live 
bacteria aside other bacterial virulence factors.

Materials and Methods

This was an experimental study approved by 
the Ethics Committee of George Emil Palade 
University of Medicine, Pharmacy, Science 
and Technology of Targu Mures, Romania. The 
study comprised 22 adult male Wistar rats, aged 
12 weeks, weighing 250 g ± 20 g, which were 
randomly divided into three groups: two exper-
imental groups (Group A and Group B, n=8 for 
each group) and a control group (Group C, n=6).  
Two weeks prior the experiment the animals 
were acclimatized with the standard laboratory 
conditions which consisted of ad libitum food 
and water, 22°C environmental temperature and 
and a 12 hour light/dark cycle.
On the experimental day the rats were fasted 
four hours prior induction of general anesthesia 
with 5% Isoflurane in oxygen, 2 L/min fresh gas 
flow rate, shifting to face mask with 2.5% Iso-
flurane in oxygen, 2 L/min fresh gas flow rate. 
Sepsis was induced by intraperitoneal injection 
of pathogens, as follows: 
Group A was injected with 0.7 ml of 1.5X108 
CFU/ml of ESBL-producing E. coli live bacteria 
(clinical isolate, as identified by Vitek2 Compact 
automated system (bioMérieux SA, France) and 
by ROSCO Neo-Sensitabs tablet synergy tests 
(Rosco Diagnostica, Denmark)).
Group B was injected with 1 ml ultrapure lipo-
polysaccharide (LPS) from Heat-Killed E. coli 
O111:B4, 107 CFU/ml (InvivoGen, USA). 
Group C – control group, injected with 1 ml of 
sterile saline solution.
Following anesthetic recovery, the animals’ ac-
tivity and respiratory rate were monitored and 
free access to water and food was allowed. 
After 24 hours, the anesthesia with the 
afore-mentioned protocol was repeated and 
blood was harvested from the abdominal aorta. 

The blood samples for serum VEGF-C levels 
(for all groups) and blood culture (for groups A 
and C) were collected when the animals were 
presenting clinical signs of deep anesthesia (lack 
of response to pain stimulus, shallow breath). 
Following blood harvesting the rats were sacri-
ficed by exsanguination and tissue samples from 
liver, kidney and lungs were collected for further 
histopathological assessment.

Detection of VEGF-C serum levels
The blood samples for VEGF-C were collected 
on clot activator blood tubes (5 ml) and left to 
rest for 30 minutes. The serum was separated by 
centrifugation for 5 minutes at 3500 rotations 
per minute and stored at –20 °C. Serum levels 
of VEGF-C were determined using VGEF-C 
enzyme-linked immunosorbent assay (ELISA) 
kit, (PromoCell GmbH, Germany) in a DYNEX 
DSX AUTOMATED ELISA SYSTEM analyzer. 
The VEGF-C detection limit of the kit was 27 
pg/ml.

Blood culture
The blood culture samples (4 ml) were inoculat-
ed in pediatric BACT/ALERT® PF culture me-
dia tubes and processed using the BacT/Alert3D 
(bioMérieux, France) microbial identification 
system. Bacteria from the positive blood cul-
tures were identified using standard culture and 
biochemical methods.

Immunohistochemistry 
Tissue samples from liver, kidney and lungs were 
fixed in 4% buffered formalin and then embed-
ded in paraffin. 5 µm sections of formalin-fixed 
paraffin-embedded tissues were dewaxed and 
rehydrated using standard methods. Endogenous 
peroxidases were blocked with 3% H2O2. Anti-
gens were retrieved by pressurized steam cook-
ing in buffer solution (EDTA-based, pH 9). Sec-
tions were incubated with a biotin-conjugated 
mouse monoclonal anti-PDPN antibody (clone 
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eBio8.1.1, ThermoFisher Scientific, USA), at a 
dilution of 1:50, for 60 min. 3, 3’-diaminoben-
zidine (DAB) was used to develop the stains. 
Nuclei were counterstained with Mayer’s hema-
toxylin solution.
To quantify the cytoplasmic expression of 
PDPN, a scoring system previously described 
in the literature was used (23). The definitions 
of the distribution scores, the intensity scores, 
and the conversion to a binary positive/negative 
score are shown in Table I. 

Statistical analysis 
Statistical Package for Social Sciences (SPSS 
version 17, Chicago, IL, USA) was used to an-
alyze the data. VEGF-C levels were compared 
using the Mann-Whitney test. Differences in se-
rum VEGF-C between animals with positive and 
negative blood cultures (group A) were assessed 
using the Unpaired t-test. The Kruskal Wallis 
nonparametric test was used for comparing the 
differences between groups. The significance 
level was set at α = 0.05.

Results

Circulating VEGF-C
Slightly higher serum VEGF-C was found in 
Group A compared to Group C (p=0.05, Mann 
Whitney), but the difference between Group B 
and C was even highly significant, with higher 
values in Group B (p=0.004). The VEGF-C se-
rum level did not differ between Group A and B 
(p=0.18). (Fig. 1).
In Group A four of the eight blood cultures were 
negative (data no shown). The animals with neg-
ative blood cultures presented pulmonary ab-
scesses at autopsy. In group A, serum VEGF-C 
was significantly increased (p=0.04) in animals 
with negative than in those with positive cul-
tures. It was also significantly increased in group 
B vs. cases with positive cultures from group A 
(p=0.03). No differences between group B and 
cases with negative cultures from group A was 
emphasized (p=0.58). All blood cultures from 
group C were negative, confirming the lack of 
infection (Table II).

Table I. The scoring system used for the quantification of the cytoplasmic expression of the PDPN

Percentage of stained cells in the tissue core Distribution Score
0 0

1-50 1
51-100 2

Intensity of signal Intensity Score
No signal 0

Weak 1
Moderate 2
Marked 3

Sum (Distribution score + Intensity Score) Total score Expression
0 0 Negative1
2 1
3 2

Positive4 35
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The horizontal line on the box-plot in figure 1 
represents the median value. The length of the 
box represents the interquartile range (IQR), the 
upper limit of the box-plot being the 75th percen-
tile, and the inferior limit the 25th percentile.  The 
horizontal lines extending from the ends of the 
box-plots represent the maximal and minimal 
serum VEGF-C values. A statistically significant 
difference was observed between the median 
values of the three groups (p= 0.04). 

Immunohistochemical assessment of PDPN in 
tissues 

Lung
In all of the cases, PDPN was expressed by the 
endothelial cells of blood and lymphatic vessels, 
and by the alveolocytes. As fewer than 50% of 
alveolocytes only slightly expressed PDPN (1+), 

in Group B and C, these specimens were con-
sidered negative for PDPN. In contrast, a high 
score (3+) was proved in cases from group A, in 
alveolocytes, without differences between those 
with positive- vs. negative blood cultures (Fig-
ure 2, Table III).

Liver
In liver tissue samples, PDPN expression was 
positive in all groups, with a distribution score 
of 2, meaning that more than 50% of the hepato-
cytes slightly expressed PDPN. The expression 
intensity was rather moderate for Group A (total 
score 3, sum 4), and weak for Groups B and C 
(total score 2, sum 3). The expression pattern was 
relatively specific, being more intense within the 
portal spaces, compared with the centrilobular 
veins areas (Table 3). In Group A and B, inflam-
matory cells were also present and marked by 

Table II. Serum level of Vascular endothelial growth factor C (VEGF-C) in the examined groups 
Number of animals Median (pg/ml) Minimum (pg/ml) Maximum (pg/ml) Interquartile range
Group A 8 89.46 39.05 188.0 100.27

4 (Blood culture +) 64.82 39.05 93.99 47.57
4 (Blood culture -) 134.6 84.92 188.0 57.37

Group B 8 71.50 50.56 99.19 34.26
Group C 6 53.65 41.76 66.65 16.24

Fig. 1. Serum VEGF-C levels in sepsis vs. control group. The highest values are shown for sepsis with 
negative blood cultures, independently from the etiopathogenesis of sepsis
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PDPN. It also marked inflammatory cells from 
lymph nodes and spleen but the results were not 
of interst (data not shown). 

Kidney
In the glomeruli, the PDPN expression was iden-
tified in the podocytes and the urinary pole of the 

Bowman’s capsule. In the tubular system, it was 
expressed in the proximal tubules and in the en-
dothelium of interstitial vessels. The epithelium 
of the distal tubules and the collecting ducts was 
not marked by PDPN. In all groups, PDPN was 
expressed by more than 50% of the cells (distri-
bution score 2). In Group A, the intensity was 

Kidney Lung

Group A
E. coli live 

bacteria - in-
duced sepsis

Group B
Ultrapure li-
popolysacha-

ride from 
Heat-Killed 
E. coli - in-
duced sepsis

Group C
Control group

Fig. 2. Immunohistochemical expression of podoplanin. In group A, podoplanin is intensified in the 
alveolocytes and downregulated in the tubular epithelium of the kidney. In group B, podoplanin expression 

is kept in tubules and not upregulated in alveolocytes.
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moderate to weak (score 2), while in Group B 
and C a higher intensity was seen in tubular ep-
ithelium (intensity score 3); thus, the expression 
was positive for all groups (Total score 3, sum 4 
in Group A; Total score 3 and sum 5 for Groups 
B and C). An intensification of the expression 
in the apical border of the proximal tubule cells 
was also observed (Figure 2, Table 3).
DS distribution score: 0 (0%), 1 (1%–50%), or 2 
(51%–100%), reflecting the percentage of posi-
tive-stained cells present in the same tissue core; 
IS – intensity score reflecting the intensity of the 
signal: 0 (no signal), 1 (weak signal), 2 (mod-
erate signal), and 3 (marked signal); TS – total 
score is the sum of distribution and intensity 
score: TS =0 (sum, 0), TS = 1 (sum, 2), TS = 2 
(sum, 3), and TS = 3 (sum, 4 or 5); Expression: 
TS of 0 and 1 are considered negative, and TS of 
2 and 3 are considered positive.

Discussion

The new definition of sepsis underscores the in-
volvement of multiple organ systems precipitat-
ed by an inadequate immune response to bacte-
rial endotoxins (LPS). This provides us with a 
new opportunity to study cellular and humoral 
changes associated with sepsis and the evalua-
tion of biomarkers, which may aid in an early 
and more objective established diagnosis of sep-
sis, with further possibility of improving thera-
peutic management of such cases (24). 

The fact that serum VEGF-C levels did not sta-
tistically differ between Groups A and B, could 
be attributed to the higher coefficient of variation 
for group A than group B. When group A was 
splitted in cases with positive vs. negative blood 
cultures, a similar high level, such in group B, 
was proved for negative vs. positive cases.
It was previously shown that LPS potently stim-
ulates VEGF expression in animal models via 
the cytokine response (25). During septic shock, 
LPS is released in the infection site following 
bacterial lysis, and transported in the circulato-
ry system in a complex with the LPS-binding 
protein (26). LPS is a conserved surface com-
ponent of all gram-negative bacteria, including 
E. coli, with virtually no differences regarding 
the immune signaling. Lipid A is a component of 
LPS, highly conserved at species level, which is 
recognized in very small amounts by the innate 
immune system (TLR4 receptor) and triggers 
the release of proinflammatory cytokines (27). 
The core oligosaccharide and the O antigen are 
the other two components of LPS, which vary 
at species and strain level, and are not required 
for the immunostimulatory activity of LPS. The 
O antigen contributes to the pathogen’s immune 
system evasion mechanisms, rather than being 
involved in inflammation and sepsis evolution 
(28, 29).
Some animals, including rodents, are naturally 
more resistant than humans to the activity of 

Table III. Immunohistochemistry score of podoplanin (PDPN) expression in the examined organs
DS IS Sum TS Expression

Lung
Group A 1 3 4 3 Positive
Group B 1 1 2 1 Negative
Group C 1 1 2 1 Negative

Liver
Group A 2 2 4 3 Positive
Group B 2 1 3 2 Positive
Group C 2 1 3 2 Positive

Kidney
Group A 2 2 4 3 Positive
Group B 2 3 5 3 Positive
Group C 2 3 5 3 Positive



Revista Română de Medicină de Laborator Vol. 29, Nr. 4, Octombrie, 2021410

LPS, thus needing high doses in order to trig-
ger an inflammatory response. In our model, 
the highest possible dose was used (LPS corre-
sponding to 107 CFU/ml). Similarly, a high dose 
of live bacteria (1.5 x 108 CFU/ml) was used to 
induce sepsis, due to the resilience of rodents to 
bacterial invasion (30).
In line to our data, Guangwei et al demonstrated 
that LPS can increase VEGF-C secretion which 
is followed by activation of NF-κB in macro-
phages, promoting cell motility and lymphangio-
genesis (31). Similar data were reported in mouse 
models of gram negative septic shock (32).
Based on the common role of VEGF-C and 
PDPN in lymphangiogenesis, we hypothesized 
that the serum level of circulating VEGF-C might 
be correlated with tissue activity of PDPN (31). 
In septic shock, early renal impairment occurs in 
up to 60% of patients, therefore the survival rate 
might depend on the integrity of the PDPN-pos-
itive podocytes (as the control group showed 
overexpressed PDPN) (33-35). Moreover, it is 
well-known that the inflammatory response, that 
occurs in acute kidney injury (AKI), secondary 
to sepsis or septic shock, damages tubular epi-
thelial cells, followed by significant necrosis 
observed in the proximal tubule (33). As conse-
quence, hypoxia especially affect the proximal 
tubules which, in our histological assessment, 
proved to secrete PDPN. 
As the highest VEGF-C serum was found in 
group A with positive blood culture but PDPN 
expression was lower in proximal tubules in 
group A compared to Group B, we conclude that 
high circulating VEGF-C might reflect LPSin-
duced damage of proximal tubules as well as 
podocytes. In one study it was shown that PDPN 
expression in the podocytes does not alter the 
LPS induced AKI (22).
Ugorski et al demonstrated that PDPN is ex-
pressed by type-I pneumocytes, having a crucial 
role in lung development, regulating the prolif-
erative potential of the cells thus type-I pneumo-

cyte maturation (36). Furthermore, PDPN null 
mice die shortly after birth, due to respiratory 
failure (37). Our results were not in agreement 
with these findings, since the PDPN expression 
in the lungs of the control group was weeak 
or negative. As cases from group A highly ex-
pressed PDPN in alveolocytes, it can be sup-
posed that it exerts a protective role against lung 
injury in sepsis induced by live bacteria.
In liver, hepatocytes and subendothelial walls 
can express PDPN but the clinical significance 
is not clear (38). However, PDPN is markedly 
upregulated in LPS stimulation compared to live 
bacterial injections (39).
A limitation of our study is that the negative 
blood cultures we obtained could possibly be at-
tributed to  the isolate of E.Coli which was done 
according to predefined standards by Vitek2 
Compact automated system (bioMérieux SA, 
France) and in the ROSCO Neo-Sensitabs tab-
let synergy tests (Rosco Diagnostica, Denmark). 
Another limitation refers to lack of evidences to 
determine the stages and severity of sepsis.

Conclusions

Serum VEGF-C could be used as a potential 
biomarker in proinflammatory stages of sepsis 
and as a predictor for AKI development in septic 
shock. PDPN is highly expressed in kidney, in 
LPS-induced sepsis, and in lung, in bacteria-in-
duced sepsis. The clinical potential of these find-
ings need to be checked by further experiments. 
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